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Abstract

Given a graph G, an independent set I(G) is a subset of the
vertices of G such that no two vertices in I(G) are adjacent. The
independence number α(G) is the order of a largest set of independent
vertices. In this paper, we study the independence number for the
Generalized Petersen graphs, finding both sharp bounds and exact
results for subclasses of the Generalized Petersen graphs.
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1 Introduction and motivation

Given a graph G, an independent set I(G) is a subset of the vertices of G
such that no two vertices in I(G) are adjacent. The independence number
α(G) is the cardinality of a largest set of independent vertices. The maxi-
mum independent set problem is to find an independent set with the largest
number of vertices in a given graph. It is well-known that this problem is
NP-hard ([4]). For other graph theory terminology the reader should refer
to [8].

The Generalized Petersen graph P (n, k) has vertices, and respectively,
edges given by

V (P (n, k)) = {ai, bi, 0 ≤ i ≤ n− 1},
E(P (n, k)) = {aiai+1, aibi, bibi+k | 0 ≤ i ≤ n− 1},
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where the subscripts are expressed as integers modulo n (n ≥ 5). Let
A(n, k) (resp., B(n, k)) be the subgraph of P (n, k) consisting of the vertices
{ai | 0 ≤ i ≤ n−1} (respectively, {bi | 0 ≤ i ≤ n−1}) and edges {aiai+1 | 0 ≤
i ≤ n − 1} (respectively, {bibi+k | 0 ≤ i ≤ n − 1}). We will call A(n, k)
(respectively, B(n, k)) the outer (respectively, inner) subgraph of P (n, k).

Albertson, Bollobas and Tucker showed in [1] that every triangle free
3-regular graph with n vertices has an independent set of order at least n

3 ,
which was improved by Staton in [7] (with an improved proof and a linear-
time algorithm to find such an independent set by C.C. Heckman and R.
Thomas in [5]) to 5n

14 for triangle-free graphs of maximum degree at most
three. The bound is sharp since α(P (7, 2)) = 5 as noted by Fajtlowicz
in [3]. However no references regarding the independence number of the
Generalized Petersen graphs were found. We propose to study this problem
in the present paper.

Since it is going to be (partially) useful later, we mention here a few
known results on the Generalized Petersen graphs (see [2, 6]).

Theorem 1.1. The following are true for the Generalized Petersen graphs
P (n, k), 1 ≤ k ≤ bn−1

2 c. Note that we take the “skip” k ≤ bn−1
2 c, because

of the obvious isomorphism P (n, k) ∼= P (n, n− k):

(1) P (n, k) is a 3-regular graph with 2n vertices and 3n edges.

(2) P (n, k) is bipartite if and only if n is even and k is odd.

(3) Assume that n, k, s are positive integers satisfying k 6≡ ±s (mod n).
Then P (n, k) is isomorphic to P (n, s) if and only if ks ≡ ±1 (mod n).

(4) P (n, k) is vertex-transitive if and only if (n, k) = (10, 2) or k2 ≡ ±1
(mod n).

(5) P (n, k) is edge-transitive only in the following seven cases: (n, k) =
(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).

(6) P (n, k) is a Cayley graph if and only if k2 ≡ 1 (mod n).

Throughout this paper, we use the Vinogradov symbols À, ¿ and the
Landau symbols O, ³ with their usual meanings. We recall that f ¿
g, g À f and f = O(g) are all equivalent and mean that |f(x)| ≤ cg(x)
holds with some positive constant c, and x sufficiently large, while f ³ g
means that both f ¿ g and g ¿ f hold.
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2 Exact Results for Some Generalized Pe-
tersen Graphs

First, observe that since there are at most
⌊

n
2

⌋
independent vertices in the

outer subgraph and
⌊

n
2

⌋
independent vertices in the inner subgraph, we

have the following lemma.

Lemma 2.1. For any n and k,

α(P (n, k)) ≤
{

n if n is even
n− 1 if n is odd.

The following theorem characterizes all Generalized Petersen graphs
P (n, k) attaining the upper bound of n.

Theorem 2.2. For P (n, k), we have that

α(P (n, k)) = n if and only if n is even and k is odd.

Proof. Under the imposed conditions, by Theorem 1.1 P (n, k) is bipartite
of equal size partite sets. Taking either of the two partite sets we obtain a
maximum independent set of cardinality n.

For the converse, assume to the contrary, that α(P (n, k)) = n and it
is not true that n is even and k is odd. By Lemma 2.1, it follows that
n is even and k is even. Let I be a maximum independent set. Since
α(P (n, k)) = n, it follows that exactly n

2 vertices of A(n, k) and exactly n
2

vertices of B(n, k) must belong to I. Without loss of generality, say that
{a2i : 0 ≤ i ≤ n

2 − 1} ⊆ I. Then no vertex b2i (0 ≤ i ≤ n
2 − 1) can be in

I. Therefore {b2i+1 : 0 ≤ i ≤ n
2 − 1} ⊆ I, which is not an independent set,

producing a contradiction.

Next, we present the independence number for Generalized Petersen
graphs for small values of k, concentrating on bounds for larger values of k
in the next section.

Proposition 2.3. Let P (n, 1) be the Generalized Petersen graph of skip 1.
Then

α(P (n, 1)) =
{

n if n is even
n− 1 if n is odd.

Proof. It is easily observed that the set
{

a2i | 1 ≤ i ≤
⌊n

2

⌋}
∪

{
b2j+1 | 0 ≤ j ≤

⌊n

2

⌋}

is a maximum independent set and the result is proved.
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Lemma 2.4. Consider the Generalized Petersen graph P (n, 2) with n ≥ 5,
and suppose n = 5q + r, where 0 ≤ r < 5. For each j ∈ {0, 5, . . . , 5(q− 1)},
define a subset Ij of V (P (n, 2)) by Ij = {aj , aj+1, aj+2, aj+3, aj+4, bj , bj+1,
bj+2, bj+3, bj+4}. Then there are at most 4 independent vertices in each Ij.

Proof. Observe that for each i (0 ≤ i ≤ n − 1), at most one of ai and bi

can be in an independent set. Assume, to the contrary, that Ij contains an
independent set I ′j with |I ′j | = 5. Then either (1) at most 3 of them must
be ai (j ≤ i ≤ j + 4), or (2) at most 3 of them must be bi (j ≤ i ≤ j + 4).
In the first case, {aj , aj+2, aj+4} ⊆ I ′j , and so at most one of bj+1 and bj+3

can belong to I ′j , which is a contradiction. In the second case, we have two
options: (a) {bj , bj+1, bj+4} ⊆ I ′j , and so at most one of aj+2 and aj+3 can
belong to I ′j (a contradiction), or (b) {bj , bj+3, bj+4} ⊆ I ′j , and so at most
one of aj+1 and aj+2 can belong to I ′j , which is also a contradiction.
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Figure 1: Figure for P (n, 2)

Thus a maximum independent subset of any set of the form of Ij can
have at most 4 vertices.

Theorem 2.5. If n ≥ 5, then α(P (n, 2)) =
⌊

4n
5

⌋
.

Proof. Let G = P (n, 2). Define a set S = {a5l−4, a5l−1, b5l−3, b5l−2 | 1 ≤
l ≤ ⌊

n
5

⌋}. As usual, all subscripts are taken modulo n. Then S is an
independent set of size b 4n

5 c, so α(G) ≥ ⌊
4n
5

⌋
.

We have 5 cases, according to the value of n modulo 5. Again, we assume
that n = 5q + r with 0 ≤ r < 5. If r = 0, then V (G) =

⋃5(q−1)
j=0 Ij , with Ij

as defined in Lemma 2.4. Then by that lemma, we have α(G) ≤ 4q =
⌊

4n
5

⌋
.

Now assume r = 1. Then there are two leftover vertices in V (G)−⋃
Ij ,

say V (G) − ⋃
Ij = {an−1, bn−1}. Since at most one of each pair {ai, bi}

(0 ≤ i ≤ n− 1) can belong to an independent set, α(G) ≤ 4q + 1. Suppose
that α(G) = 4q +1, and let T be an independent set in V (G) of size 4q +1.
Then exactly one vertex of the set V (G) − ⋃

Ij and 4 vertices from each
Ij must be in T . If an−1 ∈ T , then a0 /∈ T . This forces us to include in T
the vertices a1, a4, b3, and one of b0 and b2 from I0, the vertices a6, a9, b8,
and one of b5 or b7 from I5, and so on, until we find that we must include
an−5, an−2, bn−3, and one of bn−6 or bn−4 from I5(q−1). However, an−2 is
adjacent to an−1, which is a contradiction to the independence of T . Thus
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we cannot include an−1 in T , and a similar argument shows that we cannot
include bn−1 either. Thus α(G) ≤ 4q =

⌊
4n
5

⌋
.

If r = 2, then V (G)−⋃
Ij contains 4 vertices, say an−2, an−1, bn−2, bn−1.

At most two of these vertices may be included in an independent set, either
an−1 and bn−2, or an−2 and bn−1. As in the r = 1 case, each of these choices
of pairs forces the choice of independent vertices from each Ij , and this
will produce two adjacent vertices in our independent set, a contradiction.
Thus we may include at most one vertex from V (G) − ⋃

Ij , and hence
α(G) ≤ 4q + 1 =

⌊
4n
5

⌋
.

The remaining two cases are handled the same way: if we try to include
3 (when r = 3) or 4 (when r = 4) independent vertices from V (G)−⋃

Ij ,
we get a contradiction, so that α(G) ≤ 4q+2 when r = 3, and α(G) ≤ 4q+3
when r = 4. In any case, α(G) ≤ ⌊

4n
5

⌋
.

Proposition 2.6. If n > 6, then α(P (n, 3)) =
{

n if n is even
n− 2 if n is odd.

Proof. The case when n is even was already proved in Theorem 2.2. So
assume n is odd. By Lemma 2.1 α(P (n, 3)) ≤ n−1. However, we claim that
α(P (n, 3)) cannot be n−1. Suppose to the contrary that α(P (n, 3)) = n−1.
Then there must be n−1

2 independent vertices in the outer subgraph as well
as in the inner subgraph. Without loss of generality, we may assume that
the independent set in the outer subgraph is {a0, a2, . . . , an−3}. Thus, the
independent set from the inner subgraph must be a subset of {b1, b3, . . . ,
bn−4, bn−2, bn−1}, a set of size n+1

2 . However bn−2 is adjacent to b1, and
bn−1 is adjacent to bn−4. Thus, the inner subgraph can have at most n+1

2 −
2 = n−3

2 independent vertices, contradicting the fact that α(P (n, 3)) =
n− 1. Therefore, α(P (n, 3)) ≤ n− 2.

From the previous analysis, we also see a way to form an independent
subset of V (P (n, 3)) of size n− 2: take the vertices {a0, a2, . . . , an−3, b1, b3,
. . . , bn−4}. Thus, α(P (n, 3)) = n− 2 when n is odd.

Proposition 2.7. If n > 10, then α(P (n, 5)) =
{

n if n is even
n− 3 if n is odd.

Proof. The case when n is even was already proved in Theorem 2.2. So
assume n is odd. The set {a0, a2, . . . , an−3, b1, b3, . . . , bn−6} is an indepen-
dent set of cardinality n−1

2 + n−5
2 = n − 3. Thus α(P (n, 5)) ≥ n − 3. An

argument similar to the one given in the proof of Proposition 2.6 shows
that α(P (n, 5)) ≤ n− 2.

Suppose that α(P (n, 5)) = n− 2. Then there must be n−1
2 independent

vertices in one subgraph, and n−3
2 independent vertices in the other. With-

out loss of generality, we may assume that the largest independent set is in
the outer subgraph, say {a0, a2, . . . , an−3}. Thus, the independent set from
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the inner subgraph must be a subset of {b1, b3, . . . , bn−6, bn−4, bn−2, bn−1},
a set of size n+1

2 . However the vertices bn−4, bn−2, bn−1 are adjacent to
b1, b3, bn−6, respectively. Thus, the inner subgraph can have at most n+1

2 −
3 = n−5

2 independent vertices, contradicting the fact that α(P (n, 3)) =
n− 2. Therefore, α(P (n, 5)) ≤ n− 3.

One may observe the pattern in P (n, k) when n and k are odd. We next
show that this is not always equality, but it is a sharp lower bound. We
also consider all the other subclasses of the Generalized Petersen graphs.

3 Lower Bounds for Generalized Petersen
Graph P (n, k)

First, by Theorem 2.2 we have the result in the case that n is even and k is
odd. We thus find bounds for the other 3 cases depending on the parities
of n and k. We shall first prove the following (sharp, as we shall see) result.

Theorem 3.1. If n, k are odd integers then α(P (n, k)) ≥ 2n−k−1
2 .

Proof. We first consider the case of coprimes n, k, that is, gcd(n, k) = 1. We
can form an independent set by choosing n−1

2 vertices of the outer subgraph
and showing that we can always get at least n−k

2 more independent vertices
from the inner subgraph. Since n is odd, without loss of generality, we can
choose the vertices a2i, 0 ≤ i ≤ n−3

2 to belong to our independent set,
and we search for more independent vertices from the inner subgraph. For
ease of writing, we shall work on indices of vertices on the inner subgraph.
By abuse of notation, we call these indices adjacent if they correspond to
adjacent vertices. Recall that bi is adjacent to bj (j > i) if and only if
j − i ≡ 0 (mod k) when i + j ≤ n, and j − i − n ≡ 0 (mod k) when
i + j > n. And so, the sequence of adjacent indices in B(n, k) is

0, k, 2k, . . . , n− k, 0.

The independent set cannot contain any vertex of B(n, k) of even index,
since it would be adjacent to a vertex that is in the independent set from
A(n, k). So we need to concentrate on the odd indices in B(n, k). To
that effect, observe that every odd index above n− k will have exactly one
other odd index adjacent to it (recall that k, n are odd, and so we cannot
have three consecutive odd indices). For instance, in P (17, 7), the list of
adjacent indices on the inner subgraph is (we underline the odd indices
above n− k = 17− 7 = 10)

0, 7, 14, 4, 11, 1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3, 10, 0.
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The odd indices below n− k have only even indices or indices above n− k
as adjacent indices.

Therefore, we disregard all odd indices above n− k and choose all odd
indices below n−k as indices of independent vertices on the inner subgraph.
Since there are n−1

2 odd indices altogether, and k−1
2 of these are above n−k,

then our independent set contains now

n− 1
2

+
(

n− 1
2

− k − 1
2

)
=

2n− k − 1
2

vertices, and the theorem is proved in this case.
If gcd(n, k) = d, then the inner subgraph has exactly d cycles, each

containing n
d vertices. First, choose n−1

2 even-indexed independent vertices
on the outer subgraph. Again, as before, on the inner subgraph, two odd
indices are adjacent if and only if one of them is greater than n−k. Exclud-
ing all odd indices greater than n− k, we can pick the rest of the n−k

2 odd
indexed vertices of B(n, k) as independent vertices, for a total of 2n−k−1

2
independent vertices, and the theorem is proved.

The lower bound in the above theorem is sharp as we show below.

Proposition 3.2. If n and k are odd and k divides n, then

α(P (n, k)) =
2n− k − 1

2
.

Proof. First, notice that the inner subgraph will be a union of k n
k -cycles.

Thus there are at most k ·
⌊

n/k
2

⌋
= k(n/k−1

2 ) = n−k
2 independent vertices

in the inner subgraph. Since there are at most n−1
2 independent vertices in

the outer subgraph, we have that α(P (n, k)) ≤ 2n−k−1
2 .

For the lower bound, we can use Theorem 3.1, or we can show it directly.
We claim that the set consisting of the vertices a0, a2, . . . , an−3, b1, b3, . . . ,
bn−k−1 is independent. None of the ai are adjacent since the distance
between any two ai is at least 2. Also, none of the ai are adjacent to any
of the bj since the indices of the ai are all even, while those of the bj are
all odd. Finally, for any bj in the set, neither bj+k nor bj−k is in the set.
Thus none of the bj are adjacent. Since there are 2n−k−1

2 vertices in this
set, we have α(P (n, k)) ≥ 2n−k−1

2 . Therefore, α(P (n, k)) = 2n−k−1
2 .

Remark 3.3. One would perhaps venture to conjecture that the bound
in Theorem 3.1 is attained in all cases P (n, k) with n and k odd. That
turns out to be false. With the help of Mathematica1, we found the small-
est example (with respect to n) for which this does not happen, namely,
α(P (15, 7)) = 2·15−7−1

2 + 1 = 12.

1A trademark of Wolfram Research
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We next present a table containing the independence numbers α(P (n, k))
for n ≤ 20, k ≤ bn−1

2 c (the calculations were performed on a Core 2 Duo
2Ghz PC with 2Gb of RAM in over 45 hours, using a Mathematica pro-
gram).

n \ k 1 2 3 4 5 6 7 8 9
5 4 4
6 6 4
7 6 5 5
8 8 6 8
9 8 7 7 7
10 10 8 10 8
11 10 8 9 9 8
12 12 9 12 9 12
13 12 10 11 11 10 10
14 14 11 14 11 14 12
15 14 12 13 12 12 12 12
16 16 12 16 14 16 13 16
17 16 13 15 14 14 15 14 13
18 18 14 18 15 18 14 18 16
19 18 15 17 16 16 17 15 15 15
20 20 16 20 16 20 16 20 17 20

We next consider the case when n is odd and k is even.

Theorem 3.4. If n, k are integers with n odd and k even, then

α(P (n, k)) ≥n− 1
2

+
⌊dn

k e+ 1
2

⌋
·
⌊

n

2ddn
k e

⌋

+
d− 1

2
·
⌊

1
2

(n

d
(mod dn

k
e)

)⌋

³ (2d + 1)n
4d

+
d− 1

2
,

(1)

where d = gcd(n, k).

Proof. Note that d is odd. The inner subgraph of the Generalized Petersen
P (n, k) will consist of d cycles each of length n

d . We start by choosing in
our independent set all vertices of even index of A(n, k) : a0, a2, . . . , an−3.
There are n−1

2 such vertices. Next, as in the proof of Theorem 3.1, we list
all indices of vertices in each cycle, starting with 0, k, 2k, . . . , n − k. (It is
understood that in such a cycle, the first and the last indices are adjacent.)
Since n is odd and k even, in each cycle there will be blocks of length dn

k e
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of consecutive indices of the same parity, except for the last block (we call
such a block an incomplete block), which will have length

n

d
(mod dn

k
e).

(The indices of independent vertices will be called independent indices, to
avoid overuse of “indices of independent vertices.”) In each of the odd
numbered cycles, we choose

⌊dn
k e+ 1

2

⌋

independent indices of every block of consecutive odd integers, and in the
even numbered cycles we chose

⌊
1
2

(n

d
(mod dn

k
e)

)⌋
(least residue)

independent indices of the last block of odd vertices.
As an example, consider P (55, 10). There are d = 5 cycles of length

n
d = 11. We underline the chosen independent indices, of count at least⌊
1
2

(
n
d (mod dn

k e)
)⌋

= b 1
2 (11 (mod 6))c = 2 (in this case, we can choose 3

independent indices, that is,
⌊

1
2

(
n
d (mod dn

k e)
)⌋

+ 1, but that may not be
possible in general, as the first index of the cycle may be an odd index)

0, 10, 20, 30, 40, 50, 5, 15, 25, 35, 45
1, 11, 21, 31, 41, 51, 6, 16, 26, 36, 46
2, 12, 22, 32, 42, 52, 7, 17, 27, 37, 47
3, 13, 23, 33, 43, 53, 8, 18, 28, 38, 48
4, 14, 24, 34, 44, 54, 9, 19, 29, 39, 49

We then have blocks of dn
k e = d 55

10e = 6 same parity indices, except for a
last (incomplete) block of length n

d (mod dn
k e) = 11 (mod 6) = 5.

One of the cycles will contain the index n−1, followed by at least two odd
indices. Thus, this cycle contains the block of indices n− 1, n− 1+k−n =
k− 1, 2k− 1, so, of course, one can choose n− 1, 2k− 1, . . . as independent
indices (note that n− 1 is an even index whose corresponding vertex is not
adjacent to any vertex of the independent set. For instance, for P (55, 10)
we would choose 54, 9 as independent indices, in the last cycle, improving
the count by 1. However, this improves the lower bound just by 1 in some
cases, so we shall disregard this (practical) trick.

Next, we need to count the number of groups of consecutive odd indices
in each cycle. We note that in the odd numbered cycles there are

⌊
n

2ddn
k e

⌋

9



blocks of consecutive odd indices, and in the even numbered cycles there
are

⌈
n

2ddn
k e

⌉
blocks of consecutive odd indices. (We will deal later with

the incomplete block of odd indices, which can be found every two cycles.)
Therefore, regardless of the cycle, there are at least

⌊
n

2ddn
k e

⌋
odd-index

blocks in every cycle.
Putting all this together, and noting that there are at least d−1

2 in-
complete blocks of odd indices, we can bound from below the number of
independent vertices that we can choose from the inner subgraph by

⌊dn
k e+ 1

2

⌋
·
⌊

n

2ddn
k e

⌋
+

d− 1
2

·
⌊

1
2

(n

d
(mod dn

k
e)

)⌋

independent indices. We obtain that

α(P (n, k)) ≥ n− 1
2

+
⌊dn

k e+ 1
2

⌋
·
⌊

n

2ddn
k e

⌋
+

d− 1
2

·
⌊

1
2

(n

d
(mod dn

k
e)

)⌋
.

The approximation follows by observing that

α(P (n, k)) ³ n

2
+

n

2k
· nk

2dn
+

d− 1
2

=
(2d + 1)n

4d
+

d− 1
2

,

and the theorem is proved.

The lower bound in the above theorem is attained for P (13, 6) and
P (19, 8) among other examples.

Theorem 3.5. If n, k are even integers, then

α(P (n, k)) ≥ n

2
+

d

2

⌊ n

2d

⌋
³ 3n

4
, (2)

where d = gcd(n, k).

Proof. We shall use again the method of Theorem 3.1. Let d = gcd(n, k),
which is now an even integer. On the outer subgraph of P (n, k) we pick all
even indexed vertices as independent vertices. Next, in the inner subgraph,
there are d cycles of length n

d . Since both of n, k are even, we see that in
each cycle we have indices of the same parity (the 1st cycle contains even
indices, the 2nd contains odd indices, etc.). Thus, in each even numbered
cycle we choose

⌊
n
2d

⌋
independent indices. Since there are exactly d

2 even
numbered cycles, we get a total of

d

2

⌊ n

2d

⌋

10



inner independent indices. This will give us

α(P (n, k)) ≥ n

2
+

d

2

⌊ n

2d

⌋
.

The asymptotic follows immediately and the theorem is proved.

The lower bound in the above theorem is attained for P (16, 2) among
other examples.

Using the theorems we proved above, and the isomorphism mentioned
in Theorem 1.1 we get some bounds “for free”, moreover even exact results
for general values of k. We mention here one such result.

Corollary 3.6. If m, l are positive integers with m odd, then

α(P (2m`± 1, 2`)) ≥ 2(2m`± 1)−m− 1
2

.

Furthermore,

α(P (2p`± 1, 2p−1`)) =
⌊

4(2p`± 1)
5

⌋
,

for any integer p ≥ 1.

Proof. Using Theorem 1.1, since 2` · m ≡ ±1 (mod 2m` ± 1), we obtain
P (2m` ± 1, 2`) ∼= P (2m` ± 1,m), where m is odd. Now, by Theorem 3.1,
P (2m`± 1,m) ≥ 2(2m`±1)−m−1

2 , which proves the first claim.
For the second claim, we use a similar approach. Thus, by Theorem 1.1

P (2p` ± 1, 2p−1`) ∼= P (2p` ± 1, 2). By Theorem 2.5 and the previous iso-
morphism we get α(P (2p`± 1, 2p−1`)) =

⌊
4·(2p`±1)

5

⌋
.

Remark 3.7. The reason we include the case of P (2p` − 1, 2p−1`) (re-
call that one can assume k ≤ n−1

2 in P (n, k)) in the previous theorem is
to obtain immediately α(P (2p` − 1, 2p−1`)) = α(P (2p` − 1, 2p−1` − 1)) =⌊

4·(2p`−1)
5

⌋
.

Considering the way we obtained our lower bounds, one might think that
the best way to find a maximal independent set of a Generalized Petersen
graph is to use bn

2 c vertices of one subgraph (inner or outer) and then as
many more vertices as possible from the other. This “greedy algorithm”
does not always produce a maximal independent set as we next show for a
subclass of Generalized Petersen graphs (when k is even).

Proposition 3.8. For any integer k ≥ 1, we have that

α(P (3k, k)) =
⌈

5k − 2
2

⌉
.

11



Proof. When k is odd, this was proven in Proposition 3.2. So we as-
sume that k is even. Let k = 2t for some positive integer t. For the
lower bound, consider the set {a0, a2, . . . , a2t−2, a2t+1, a2t+3, . . . , a6t−3} ∪
{b1, b3, . . . , b2t−1, b2t, b2t+2, . . . , b4t−2}, of cardinality 5t− 1 = 5k−2

2 . This is
an independent set, so α(P (3k, k)) ≥ ⌈

5k−2
2

⌉
.

Now we show
⌈

5k−2
2

⌉
is also an upper bound for α(P (3k, k)). Again,

let k = 2t. One can choose at most 3t independent vertices from the outer
subgraph, and we can choose at most 2t independent vertices from the
inner subgraph since it is the union of 2t triangles. Thus α(P (6t, 2t)) ≤ 5t.
Suppose there exists an independent set of size 5t. We may assume that
the independent vertices from the outer subgraph form the set I = {a2i :
0 ≤ i ≤ 6t−2}. However, this means we cannot include in our independent
set any of the vertices b0, b2t, b4t because each of these is adjacent to a
vertex in I. Therefore the triangle formed by b0, b2t, b4t cannot contribute
any independent vertices, contradicting the statement that there exists an
independent set of size 5t. Thus α(P (3k, k)) ≤ 5t−1 = 5k−2

2 =
⌈

5k−2
2

⌉
.

The above result and a weaker version of Theorem 2.5 are proposed as
supplementary problems to [8], and can be found on the following web site:
http://www.math.uiuc.edu/∼west/igt/newprob.html.

The Generalized Petersen graphs are particular cases of the I-graphs
(see [2]). The I-graph I(n, j, k) is a graph with vertex and and edge set

V (I(n, j, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1}

E(I(n, j, k)) = {uiui+j , uivi, vivi+k | i = 0, . . . , n− 1}.
Since I(n, j, k) = I(n, k, j) we will usually assume that j ≤ k. Clearly
P (n, k) = I(n, 1, k). It could be an interesting project to investigate the
independence number for this class of graphs, as well, and we propose that
to the interested reader.
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[2] M. Boben, T. Pisanski, and A. Žitnik, I-graphs and the corresponding
configurations, J. Combinatorial Designs 13:6 (2005), 406–424.

[3] S. Fajtlowicz, On the size of independent sets in graphs, Congressus
Numerantium 21 (1978), 269–274.

[4] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman, 1983.

[5] C.C. Heckman, and R. Thomas, A New Proof Of The Independence
Ratio Of Triangle-Free Cubic Graphs, Discrete Math. 233 (2001), 233–
237.

[6] W.P.J. Pensaert, Hamilton paths in Generalized Petersen graphs, M.A.
thesis, Univ. of Waterloo, 2002.

[7] W. Staton, Some Ramsey-type numbers and the independence ratio,
Trans. AMS 256 (1979), 353–370.

[8] D. West, Introduction to Graph Theory, 2nd Edition, Prentice Hall,
Upper Saddle River, NJ, (2001).

13


